

Event Management Guide
Oracle Banking Digital Experience

Patchset Release 22.2.5.0.0

Part No. F72987-01

October 2024

Event Management Guide

October 2024

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2024, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Purpose .. 1–1

1.2 Audience ... 1–1

1.3 Documentation Accessibility ... 1–1

1.4 Critical Patches ... 1–1

1.5 Diversity and Inclusion .. 1–1

1.6 Conventions .. 1–1

1.7 Screenshot Disclaimer .. 1–2

1.8 Acronyms and Abbreviations .. 1–2

2. Introduction .. 2–1

3. Database Configurations .. 3–1

4. Code Configuration ... 4–1

5. Event Processing ... 5–1

6. Custom Fields For Push notifications ... 6–1

7. Multi-Entity Specific templates ... 7–1

1–1

1. Preface

1.1 Purpose

Welcome to the User Guide for Oracle Banking Digital Experience. This guide explains the
operations that the user will follow while using the application.

1.2 Audience

This manual is intended for Customers and Partners who setup and use Oracle Banking Digital
Experience.

1.3 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit, http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Critical Patches

Oracle advises customers to get all their security vulnerability information from the Oracle Critical
Patch Update Advisory, which is available at Critical Patches, Security Alerts and Bulletins. All
critical patches should be applied in a timely manner to ensure effective security, as strongly

recommended by Oracle Software Security Assurance.

1.5 Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse
workforce that increases thought leadership and innovation. As part of our initiative to build a more
inclusive culture that positively impacts our employees, customers, and partners, we are working
to remove insensitive terms from our products and documentation. We are also mindful of the
necessity to maintain compatibility with our customers' existing technologies and the need to
ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these
technical constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

1.6 Conventions

The following text conventions are used in this document:

Convention Meaning

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

1–2

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

1.7 Screenshot Disclaimer

The images of screens used in this user manual are for illustrative purpose only, to provide
improved understanding of the functionality; actual screens that appear in the application may vary
based on selected browser, theme, and mobile devices.

1.8 Acronyms and Abbreviations

The list of the acronyms and abbreviations that you are likely to find in the manual are as follows:

Abbreviation Description

OBDX Oracle Banking Digital Experience

2–1

2. Introduction

This document contains steps to configure alerts for any event in the OBDX application. An alert
configuration is identified by following properties:

1. Event Group: It groups similar events of similar functionalities together. An Event Group may
contain multiple events.

2. Event: An event could be any action taken by the user or system in OBDX application that
triggers alert. Each event maps to a corresponding action or an activity executed in the
business logic in OBDX. OBDX application may receive events from external system which
are responsible for triggering alert.

3. Message template: This is a template of the message that needs to be sent as an alert to the
receiver. An event can have multiple templated based on the channel on which it is getting
delivered.

4. Message Destination: Destination is the channel on which alert/ notification will be delivered
to the user. OBDX supports 5 such channels – Email, SMS, WhatsApp, Push Notification and
On-screen notification.

5. Message Attribute: A message template contains the message to be delivered to the
receiver. The message is relevant to the action being performed in the specific event and it
contains dynamic data values from the business logic. A message attribute is an identifier,
which is used in the message template to replace with the actual values dynamically.

6. Message Action: Some of the events in OBDX contains an actionable link in its content. This
link is responsible for the navigation of user to desired location from the alert. Message action
attribute defines the action to be executed during event processing.

This document also contains the business logic required to invoke an event for triggering alert
within OBDX and other miscellaneous aspects.

3–1

3. Database Configurations
1. DIGX_EM_EVENT_GROUP

This table contains the available event group entries in OBDX. One event group may have multiple
events. An event group can be created as per the requirements.

COLUMN NAME DESCRIPTION

ID A unique identifier for the event group.

NAME Name of the event group.

DESCRIPTION Description of the event group.

IS_DND_APPLICABLE Identifies whether the DND setting is applicable for this event group
or not. Possible values: ‘Y’ or ‘N’.

2. DIGX_EM_EVENT

The events are added in the DIGX_EM_EVENT table.

COLUMN NAME DESCRIPTION

ID A unique identifier for the event occurred. It should be a logical name
for the event.

NAME Name of the event.

DESCRIPTION Description of the event.

EVENT_TYPE Identifies if the event is Mandatory or Subscribe-able for the user.
Possible values are: ‘M’ or ‘S’.

EVENT_GROUP_ID Specifies the Group id of the event.

TASK_ID This column is used for subscription-based alerts. If account access
needs to be checked for an alert before sending it to receiver, this task
id will be used to check account access.

3–2

3. DIGX_EM_MESSAGE_ATTRIBUTE

Message attributes are added in the table DIGX_EM_MESSAGE_ATTRIBUTE table.

COLUMN
NAME

DESCRIPTION

NAME Name of the attribute. This needs to be used in the message template where
the dynamic value needs to be replaced.

DESCRIPTION Description of the attribute.

EVENT_ID ID of the Event. It should match ID column of DIGX_EM_EVENT

DATATYPE It determines the type of data. Example – String, Date, Currency, Complex
and Number.

PATH It specifies the path of message template.

4. DIGX_EM_MESSAGE_ACTION

Message Actions are added in DIGX_EM_MESSAGE_ACTION table. This is only for those events
that are actionable and contains URL.

COLUMN NAME DESCRIPTION

NAME Name of the action. This needs to be used in the template where the
link need to be replaced with

DESCRIPTION Description of the action.

EVENT_ID ID of the Event. It should match ID column of DIGX_EM_EVENT

URL_TEMPLATE URL of the event. This is the actual URL/ link where the user will be
redirected to.

URL_TEXT This is the text that will be displayed in the alert received by the user.

LOGIN_REQUIRED Identifies if login is required or not. If the redirection page is restricted,
it should ask for login page. Possible values: ‘Y’ or ‘N’.

3–3

5. DIGX_EM_MESSAGE_TEMPLATE

Message templates are added to the table DIGX_EM_MESSAGE_TEMPLATE table.

COLUMN NAME DESCRIPTION

NAME Name of the message template.

TITLE Title of the message template. This is the subject on the alert in
case of email and on-screen message.

CONTENT It contains the format for the message body. It is stored as CLOB
in the table.

LOCALE The locale column stores language and regional preferences,
typically represented by language codes like "en" for English.

DETERMINANT_VALUE It determines the entity code for the template.

DELETE_STATUS Identifies the delete status of message template. Possible values
are: ‘Y’ or ‘N’.

EVENT_ID ID of the Event. It should match ID column of DIGX_EM_EVENT.

DESCRIPTION Description of the message template.

Note: While defining the content of the message template, the attribute name and the message
action name needs to have # as prefix and suffix.
Example: If the attribute name in payeeName, the message content would be, “You have added
#payeeName# as a beneficiary for payment.

6. DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL

A message template needs to be mapped to the desired destinations to which alert needs to be
delivered.

COLUMN NAME DESCRIPTION

TEMPLATE_NAME Name of the message template. It should match the column NAME
of DIGX_EM_MESSAGE_TEMPLATE.

LOCALE The locale column stores language and regional preferences,
typically represented by language codes like "en" for English. It
should match the column LOCALE of
DIGX_EM_MESSAGE_TEMPLATE.

3–4

COLUMN NAME DESCRIPTION

DETERMINANT_VALUE It determines the entity code for the template. It should match the
column DETERMINANT_VALUE of
DIGX_EM_MESSAGE_TEMPLATE.

DESTINATION_ID Determines the channel on which alert is to be sent. Possible
values are SMS, WA, SMB, EM and PN.

7. DIGX_EM_DESTINATION

Destinations are added in DIGX_EM_DESTINATION table. In the application five such destinations
are already present which are Email(EM), SMS(SMS), Push Notification(PN), Secure
Mailbox(SMB) and WhatsApp(WA).

COLUMN NAME DESCRIPTION

ID Primary key of the table. An identifier for the destination.

NAME Name of the destination.

DESCRIPTION Description of the destination.

Note: Entries for most of the event groups, events, message attributes, message action, message
templates and message template destination relation are already added. Please check for the
entries in the table to avoid repetition.

Sample Scripts

• insert into DIGX_EM_EVENT_GROUP (ID,NAME,DESCRIPTION,IS_DND_APPLICABLE)
values ('SMS', ' User Management', 'Event group for user management', 'N');

• insert into DIGX_EM_EVENT
(ID,NAME,DESCRIPTION,EVENT_TYPE,EVENT_GROUP_ID,TASK_ID) values
('USER_LOGIN_SUCCESS', 'Login success Alert', 'Login success Alert', 'M', 'SMS', null);

• insert into DIGX_EM_MESSAGE_ATTRIBUTE
(NAME,DESCRIPTION,EVENT_ID,DATATYPE,PATH) values ('BankName', 'Bank Name For
Login Success Alert', 'USER_LOGIN_SUCCESS', 'String', 'bankName')

3–5

• insert into DIGX_EM_MESSAGE_ACTION
(NAME,DESCRIPTION,EVENT_ID,URL_TEMPLATE,URL_TEXT,LOGIN_REQUIRED)
values ('act1', 'Url Template for Approval of Non-Financial Transaction',
'com.ofss.digx.app.approval.service.transaction.Transaction.checkApprovals.nonfinancial_TR
ANSACTION_INITIATED_APPROVER',
'home.html?homeModule=approvals&homeComponent=transaction-
detail¶ms={"apiType":"#ApiType#","transactionId":"#TxnReferenceNo#"}', 'click here',
'Y');

• insert into DIGX_EM_MESSAGE_TEMPLATE
(NAME,TITLE,CONTENT,LOCALE,DETERMINANT_VALUE,DELETE_STATUS,EVENT_ID,
LAST_UPDATED_BY,LAST_UPDATED_DATE,DESCRIPTION) values
('USER_LOGIN_SUCCESS_SHORT', 'Login Success Alert.', 'You have successfully logged
in to your internet banking on #loginSuccessDateAndTime#. If you do not recognize this login
attempt, immediately contact customer care/branch.', 'en', '*', 'N', 'USER_LOGIN_SUCCESS',
'OBXUser',sysdate, 'Login success Alert Short Template');

• insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL (TEMPLATE_NAME,
LOCALE,DETERMINANT_VALUE,DESTINATION_ID) values
('USER_LOGIN_SUCCESS_SHORT', 'en', '*', 'SMS');

• insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL
(TEMPLATE_NAME,LOCALE,DETERMINANT_VALUE,DESTINATION_ID) values
('USER_LOGIN_SUCCESS_SHORT', 'en', '*', 'PN');

• insert into DIGX_EM_DESTINATION (ID, NAME, DESCRIPTION) values ('SMS', 'SMS',
'Destination for sending messages via SMS');

4–1

4. Code Configuration

API for Raising an Event:

For raising an event, generateEvent API has been provided in the AbstractApplication class. A
developer needs to call this API to generate an alert that is required for the respective business
logic.

It takes three parameters:

1. Session Context

2. ActivityLog: This object contains the dynamic data that needs to be replace in place of
attributes in the message template content.

3. EventId

Typically, an event is triggered from service after the business logic has been performed. While
triggering alert API event id and the parameters that needs to be passed should be determined and
defined to the database tables mentioned above.

For an account-based alert of type mandatory or subscription, accountId and accountType attribute
should be populated in ActivityLog. Similarly for a Party-based alert, customerId attribute should
be populated in the ActivityLog.

In the application, Activity log contains some basic fields that can be used as attributes for the alert
processing. In case, additional fields are required in the message content a sub class of ActivityLog
should be created and used and passed as an argument to “generateEvent” API.

Following is a sample code that can be used in the business logic to generate and event and trigger
alert.

ActivityLog activityLog = new ActivityLog();

 activityLog.setCustomerId(sessionContext.getTransactingPartyCode());

 activityLog.setAccountId(“<<AccountNumber>>”);

 activityLog.setAccountType(“<<AccountType>>”);

//If required, set other attributes in activityLog

super.generateEvent(sessionContext, activityLog, <<EventId>>);

Alert generated using schedulers, listener classes

4–2

An alert can be generated from a non-standard REST API of OBDX application. It can be invoked
in a scheduler class, a listener class or it can also be invoked from a runnable thread invoked within
a service. In such cases, ensure that following code is executed at the end of the business logic.
Possibly within a finally block of the code, through which generate event has been triggered.

EmHandler.getInstance().putMessage();

5–1

5. Event Processing

Event processing in OBDX application initiates from the business logic. A developer needs to
determine the service class from which alert needs to be triggered. Following steps/instructions can
be followed to use event processing mechanism

1. Determine and create an event ID to be used and the group it belongs to. If any existing
group cannot be used define a new group.

2. Determine all the parameters that can be used as attributes or actions in the alert’s message
content. These parameters will be used in the activity log. Keep in mind the end message
content while determining the parameters in the activity log.

3. Find the location in the business logic to generate the event and use the API information
provided above.

4. Make all the necessary Day 0 entries in the database tables discussed in the previous
section.

5. The event processing in OBDX happens in 2 steps, Generation of event and Processing of
that event. In a regular REST based service scenario, developer needs to write the logic to
generate the event, however the processing of that event is done by OBDX framework upon
successful completion of transaction.

6. This 2-step process is based on queue notification framework which is based on either JMS
or KAFKA implementation. Ensure that proper configurations are in place based on the
implementation preferences. Queue setup information is given in the following sections.

7. Upon successfully completion of the transaction, event is processed by event framework and
notifications are sent to the receiver over the configured and desired channels.

8. Populating Notification Details in the activity log – In general, if a user who has logged in into
the application, performed a specific transaction and the same user needs to receive the
alert, event framework considers its contact details and dispatches the message correctly.
However, it the message needs to be delivered to a receiver who has not logged in,
developer needs to populate its contact details in notificationDetails field of the ActivityLog
object. If the receiver is an OBDX application user, its user id can be set. In other cases,(or
alternately for OBDX users case as well) direct contact details like email id or mobile number
can also be set in the notification details.

9. DND settings – Event Processing framework allows DND options for the user to stop
receiving few alerts. Developer can decide the event groups that are applicable for DND
settings. There are 2 ways to set DND for the receiver.

a. An admin user can map DND groups to other users using User management transaction

b. A user can do the DND mapping by itself using preferences transaction

10. Delivery Mode preferences – A receiver may choose its preferred delivery mode using
preferences transaction. By default, all the destinations are set as preferred delivery modes.
A user must have at least one delivery mode enabled.

11. Language Preference – A receiver may choose preferred language to receive the alerts. If
preferred language is not set Bank’s default language will be used to deliver the message.
Developer needs to ensure that message templates are properly configured for all the
supported languages defined in the implementations. If the language specific template is not
available, by default, template in the English language will be taken up for processing and
delivered.

12. Events in OBDX are categorized in 2 types

a. Mandatory Alert – this alert is always sent to the receiver whenever the event occurs

5–2

b. Subscription Alert – this alert is sent to the receiver only if the receiver has subscribed for
it. A receiver can subscribe for events using ‘Alert Subscription’ transaction under
preferences.

13. Message Template maintenance – as explained above, the message templates for the
events can be maintained using Day-0 scripts. However, Administrator user can create or edit
these message templates using message Template Maintenance transaction. A template can
be deleted as well using this transaction.

(More information on all the above transactions is given in the user manuals.)

Important Tables in Event Processing

1. DIGX_EM_ALERT_DISPATCH_LOG – Provide the final status of the alert

2. DIGX_EM_ALERT_STATE_LOG – Provides the in-detail logging of the alert processed and
the various states it passed through

3. DIGX_EM_SUBSCRIPTION – Lists all the users who have subscribed for the event

4. DIGX_EM_SUBSCRIBED_EVENTS – contains the mapping of receivers and the events they
have subscribed to

5. DIGX_EM_DND_PREF – Contains the mappings of receiver and the event groups that the
respective user has marked for DND.

6. DIGX_EM_PREFERRED_DESTINATION_PREF – provides the listing of destination
preferences maintained by the users

Notification Settings for Event Processing

KAFKA Settings: ???

JMS Settings: ???

Event Processing Dispatchers

OBDX application uses dispatcher classes to provide business logic for sending the notifications to
the receiver on desired destination or channel. Each destination must have a dispatcher class
associated with it. The application provides a default dispatcher for all five pre-defined destination.
An implementor may use custom dispatcher classes for these destinations.

Default Email dispatcher class uses standard JAVA mail APIS to send emails using SMTP server.
SMTP configurations need to be maintained in the configuration related tables. Also, SMTP
configurations maintenance and testing can be done using ‘System Configurations’ transaction.
Details on this transaction are given in the OBDX core user manual.

Default SMS dispatcher is not pre-integrated with any SMS provider. An implementor is advised to
use a custom SMS dispatcher as per the requirements.

Custom dispatcher class must extend following class and implement the necessary methods -
‘com.ofss.digx.app.em.alert.service.process.dispatch.dispatcher.AbstractDispatcher’. A custom
message class can also be used to use specific recipient details. This message class must
implement ‘com.ofss.digx.app.em.alert.service.process.message.IMessage’.

6–1

6. Custom Fields For Push notifications

Following Keys can be used to customize Push Notifications.

KEY NAME VALUE

SOUND_IOS File name of custom sound file added to OBDX IOS App

SOUND_ANDROID File name of custom sound file added to OBDX Android App

LARGE_ICON_ANDROID URL of icon image to be displayed as large icon in Big Style
Push Notification of OBDX Android App.

LARGE_IMAGE_ANDROID URL of image to be displayed in Big Style Push Notification of
OBDX Android App.

These custom keys are to be added to the value of “CONTENT” column of
DIGX_EM_MESSAGE_TEMPLATE table.

If alerts are being created through front end UI, add following keys to “Notification Message”
section.

Syntax for adding custom keys to Push Notification alert messages

[customfield1Name~customfield1Value|customfield2Name~customfield2Value]

Example 1:

You have requested for #NoOfChequeBook# cheque book with #ChequeBookOption# leaves on
Account #AccountNo#.

[SOUND_ANDROID~isntit|LARGE_IMAGE_ANDROID~http://static1.squarespace.com/static/54a
c6f9ae4b0cf1d82a4b59e/t/587f9e52cd0f68e84c5548fd/1484758653422/?format=300w|SOUND_I
OS~chime.m4a]

Example 2:

You have requested for #NoOfChequeBook# cheque book with #ChequeBookOption# leaves on
Account #AccountNo#.

[SOUND_ANDROID~isntit|LARGE_ICON_ANDROID~http://static1.squarespace.com/static/54ac
6f9ae4b0cf1d82a4b59e/t/587f9e52cd0f68e84c5548fd/1484758653422/?format=300w|SOUND_I
OS~chime.m4a]

7–1

7. Multi-Entity Specific templates

Entity specific templates can be created by following ways :

1. Creation of a new alert and template before the entity creation.

If a new alert has to be maintained before the creation of any new entity, the data for the same
has to be inserted in the following tables twice.

One for DETERMINANT_VALUE ‘*’ and the other for DETERMINANT_VALUE ‘OBDX_BU’,
which is the default entity.

Tables:

DIGX_EM_MESSAGE_TEMPLATE

DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL

2. Creation of a new alert and template after the entity creation.

If a new alert has to be maintained after the creation of entity/entities, the same can be
replicated for the different entities using the below queries.

First insert the templates for DETERMINANT_VALUE ‘*’ and DETERMINAT_VALUE
‘OBDX_BU’ and then execute the below queries for the respective entities.

insert into DIGX_EM_MESSAGE_TEMPLATE(NAME, DESCRIPTION, TITLE, CONTENT,
LOCALE, DETERMINANT_VALUE, DELETE_STATUS, EVENT_ID, LAST_UPDATED_BY,
LAST_UPDATED_DATE)
(SELECT NAME, DESCRIPTION, TITLE, CONTENT, LOCALE, #determinantValue,
DELETE_STATUS, EVENT_ID, LAST_UPDATED_BY, sysdate
FROM DIGX_EM_MESSAGE_TEMPLATE WHERE DETERMINANT_VALUE = '*')

insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL(TEMPLATE_NAME,
LOCALE, DETERMINANT_VALUE, DESTINATION_ID)
(SELECT TEMPLATE_NAME, LOCALE, #determinantValue, DESTINATION_ID
FROM DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL WHERE
DETERMINANT_VALUE = '*')

